

Outline

2

 High Performance Computing (HPC)
 Towards exascale computing: a brief history
 Challenges in the exascale era

 Big Data meets HPC
 Some facts about Big Data
 Technologies
 HPC and Big Data converging

 Case Studies:
 Bioinformatics
 Natural Language Processing (NLP)

Outline

3

 High Performance Computing (HPC)

 Towards exascale computing: a brief history

 Challenges in the exascale era

 Big Data meets HPC
 Some facts about Big Data
 Technologies
 HPC and Big Data converging

 Case Studies:
 Bioinformatics
 Natural Language Processing (NLP)

What types of big problem might require a “Big Computer”?

High Performance Computing (HPC)

5

 Compute Intensive: A single problem requiring a large
amount of computation

Memory Intensive: A single problem requiring a large
amount of memory

 High Throughput: Many unrelated problems to be
executed over a long period

 Data Intensive: Operation on a large amount of data

What types of big problem might require a “Big Computer”?

High Performance Computing (HPC)

6

 Compute Intensive:

 Distribute the work across multiple CPUs to reduce the execution

time as far as possible:
̶ Each thread performs a part of the work on its own CPU, concurrently

with the others
 CPUs may need to exchange data rapidly, using specialized

hardware
 Large systems running multiple parallel jobs also need fast access

to storage
 Many use cases from Physics, Chemistry, Energy, Engineering,

Astronomy, Biology...
 The traditional domain of HPC and supercomputers

What types of big problem might require a “Big Computer”?

High Performance Computing (HPC)

7

 Memory Intensive:
 Aggregate sufficient memory to enable solution at all
 Technically more challenging if the program cannot be parallelized

 High Throughput:

 Distribute work across multiple CPUs to reduce the overall
execution time as far as possible

 Workload is trivially (or embarrassingly) parallel
̶ Workload breaks up naturally into independent pieces
̶ Each piece is performed by a separate process on a separate CPU

(concurrently)
 Emphasis is on throughput over a period, rather than on

performance on a single problem
 Obviously a supercomputer can do this too

What types of big problem might require a “Big Computer”?

High Performance Computing (HPC)

8

 Data Intensive:

 Distribute the data across multiple CPUs to process in a reasonable

time
 Note that the same work may be done on each data segment
 Rapid movement of data in and out of (disk) storage becomes

important
 Big Data and how to efficiently process it currently occupies much

thought

Challenges in the exascale era

High Performance Computing (HPC)

13

 FLOPS is not on command
 Once upon a time… when FPU was the most expensive

and precious resource in a supercomputer
Metrics: FLOPS, FLOPS and FLOPS
 But Data movement’s energy efficiency isn’t imporving as

fast as Flop’s energy efficiency
 Algorithm designer should be thinking in terms of

wasting the inexpensive resource (flops) to reduce data

movement

 Communication-avoiding algorithms

Outline

15

 High Performance Computing (HPC)
 Towards exascale computing: a brief history
 Challenges in the exascale era

 Big Data meets HPC

 Some facts about Big Data

 Technologies

 HPC and Big Data converging
 Case Studies:

 Bioinformatics
 Natural Language Processing (NLP)

Some facts about Big Data
Big Data meets HPC

17

 Data in 2013: 4.4 Zettabytes (4.4 x 1021 bytes)
 Estimation in 2020: 44 Zettabytes

Searching for one element in a 1 MB file: < 0.1 seconds
Searching for one element in a 1 GB file: a few minutes
Searching for one element in a 1 TB file: about 30 hours

Searching for one element in a 1 PB file: > 3 years
Searching for one element in a 1 EB file: 30 centuries

Searching for one element in a 1 ZB file: 3,000 millennium
Estimation using a PC

Technologies: how to process all these data
Big Data meets HPC

20

 Map/Reduce paradigm

 Introduced by Dean and Ghemawat (Google, 2004)
 As simple as providing:

̶ MAP function that processes a key/value pair to generate a set of
intermediate key/value pairs

̶ REDUCE function that merges all intermediate values associated
with the same intermediate key

 Runtime takes care of:
 Partitioning the input data (Parallelism)
 Scheduling the program’s execution across a set of machines

(Parallelism)
 Handling machine failures
 Managing inter-machines communication (Parallelism)

Technologies: Apache Hadoop
Big Data meets HPC

22

 Apache Hadoop is an open-source implementation of
the Map/Reduce paradigm

 It’s a framework for large-scale data processing
 It is designed to run on cheap commodity hardware
 It automatically handles data replication and node failure
 Hadoop provides:

 API+implementation for working with Map/Reduce
 Job configuration and efficient scheduling
 Browser-based monitoring of important cluster stats
 A distributed filesystem optimized for HUGE amounts of

data (HDFS)

Technologies: Apache Hadoop
Big Data meets HPC

25

 Pros:

 Write here all the advantages commented previously

 Hadoop it’s written in Java but allows to execute codes from

different programming languages (Hadoop Streaming)

 Hadoop Ecosystem (Pig, Hive, HBase, etc…)

Technologies: Apache Hadoop
Big Data meets HPC

26

 Cons:

 The problem must fit the Map/Reduce paradigm (embarrassingly
parallel problems)

 Bad for iterative applications
 Important degradations in performance when using Hadoop

Streaming (i.e. when codes are written in languages as Fortran,
C, Python, Perl, etc.)

 Intermediate results output is always stored on disks (In-Memory
MapReduce – IMMR)

 No reuse computation for jobs with similar input data:
̶ For example, job runs everyday to find the most frequently read

news over the past week
 Hadoop was not-designed by HPC people (joke!!!)

Technologies: Apache Spark
Big Data meets HPC

27

 Apache Spark is an open source project
 It starts as a research project in Berkeley
 Cluster computing framework designed to be fast and general-

purpose

 Pros (I):

 Extends the Map/Reduce paradigm to support more types of
computations (interactive queries and stream processing)

 APIs in Python, Java and Scala
 Spark has the ability to run computations in memory (Resilient

Distributed Datasets – RDDs)

Technologies: Apache Spark
Big Data meets HPC

28

 Pros (II):

 It supports different workloads in the same engine:
̶ Batch applications
̶ Iterative algorithms
̶ Streaming and iterative queries

 Good integration with Hadoop

 Cons:

 Memory requirements

Other Technologies
Big Data meets HPC

31

 Apache Flink

 It’s an European project
 Functionalities very similar to those explained for Spark

 If you like R, try this:
 RHIPE

̶ Released as R package
̶ Map and Reduce functions as R code

 Big R (O. D. Lara et al. “Big R_ Large-scale Analytics on Hadoop Using R”,
IEEE Int. Congress on Big Data, 2014)

̶ It hides the Map/Reduce details to the programmer

HPC and Big Data converging
Big Data meets HPC

33

 Those technologies were designed to run on “cheap”
commodity clusters, but…

… there is more to Big Data than large amounts of
information

 It also related to massive distributed activities such as

complex queries and computation (analytics or data-
intensive scientific computing)

 High Performance Data Analytics (HPDA)

HPC and Big Data converging
Big Data meets HPC

34

 Infiniband:
 It’s the standard interconnect technology used in HPC

supercomputers
 Commodity clusters use 1Gbps or 10Gbps ethernet
 Hadoop is very network-intensive (e.g. Data Nodes and

Task Trackers exchange a lot of information)
 56Gbps FDR can be 100x faster than 10 Gbps ethernet

due to its superior bandwidth and latency

 It allows to scale the big data platform to the desired size,
without worrying about bottlenecks

HPC and Big Data converging
Big Data meets HPC

35

 Accelerators:
 Hadoop and Spark only work on homogeneous clusters

(CPUs)
 HPC is moving to heterogeneous platforms consisting of

nodes which include GPUs, co-processors (Intel Xeon Phi)
and/or FPGAs.

 Most promising systems to reach the exaflop
 Accelerator can boost the performance (not all

applications fit well)

 For complex analytics or data-intensive scientific
computing

 A lot of interest: HadoopCL, Glasswing, GPMR, MapCG,
MrPhi, etc…

Outline

36

 High Performance Computing (HPC)
 Towards exascale computing: a brief history
 Challenges in the exascale era

 Big Data meets HPC
 Some facts about Big Data
 Technologies
 HPC and Big Data converging

 Case Studies:

 Bioinformatics

 Natural Language Processing (NLP)

Natural Language Processing
Outline

39

 NLP suited to structure and organize the textual information accessible
through Internet

 Linguistic processing is a complex task that requires the use of several
subtasks organized in interconnected modules

 Most of the existent NLP modules are programmed using Perl

(regular expressions)
 We have integrated into Hadoop three NLP modules (Hadoop

Streaming):
 Named Entity Recognition (NER): It consists of identifying as a single unit (or token)

those words or chains of words denoting an entity, e.g. New York, University of San
Diego, Herbert von Karajan, etc.

 PoS-Tagging: It assigns each token of the input text a single PoS tag provided with
morphological information e.g. singular and masculine adjective, past participle verb,
etc.

 Named Entity Classification (NEC): It is the process of classifying entities by means
of classes such as “People”, “Organizations”, “Locations”, or “Miscellaneous”.

J. M. Abuín, Juan C. Pichel, Tomás F. Pena, P. Gamallo and M. García. “Perldoop: Efficient Execution of Perl
Scripts on Hadoop Clusters”, Big Data Conference, 2014

Natural Language Processing
Outline

40

 HPC people (including myself) are “obsessed” with
performance… Flops, Flops and Flops

 Hadoop Streaming is really nice, but it shows an important
degradation in performance (w.r.t. Java codes)

 Perldoop: we designed an automatic source-to-source
translator Perl to Java:
 It’s not general-purpose
 Perl scripts should be in Map/Reduce format
 Perl codes should follow some simple programming rules

J. M. Abuín, Juan C. Pichel, Tomás F. Pena, P. Gamallo and M. García. “Perldoop: Efficient Execution of Perl
Scripts on Hadoop Clusters”, Big Data Conference, 2014

43

Thank you!
juancarlos.pichel@usc.es

citius.usc.es

