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 Compute Intensive: A single problem requiring a large 
amount of computation 
 

Memory Intensive: A single problem requiring a large 
amount of memory 
 

 High Throughput: Many unrelated problems to be 
executed over a long period 
 

 Data Intensive: Operation on a large amount of data 
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 Compute Intensive: 
 
 Distribute the work across multiple CPUs to reduce the execution 

time as far as possible: 
̶ Each thread performs a part of the work on its own CPU, concurrently 

with the others 
 CPUs may need to exchange data rapidly, using specialized 

hardware 
 Large systems running multiple parallel jobs also need fast access 

to storage 
 Many use cases from Physics, Chemistry, Energy, Engineering, 

Astronomy, Biology... 
 The traditional domain of HPC and supercomputers 
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 Memory Intensive: 
 Aggregate sufficient memory to enable solution at all 
 Technically more challenging if the program cannot be parallelized 

 
 High Throughput: 

 Distribute work across multiple CPUs to reduce the overall 
execution time as far as possible 

 Workload is trivially (or embarrassingly) parallel 
̶ Workload breaks up naturally into independent pieces 
̶ Each piece is performed by a separate process on a separate CPU 

(concurrently) 
 Emphasis is on throughput over a period, rather than on 

performance on a single problem 
 Obviously a supercomputer can do this too 
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 Data Intensive: 
 
 Distribute the data across multiple CPUs to process in a reasonable 

time 
 Note that the same work may be done on each data segment 
 Rapid movement of data in and out of (disk) storage becomes 

important 
 Big Data and how to efficiently process it currently occupies much 

thought 











Challenges in the exascale era 
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 FLOPS is not on command 
 Once upon a time… when FPU was the most expensive 

and precious resource in a supercomputer 
Metrics: FLOPS, FLOPS and FLOPS 
 But Data movement’s energy efficiency isn’t imporving as 

fast as Flop’s energy efficiency 
 Algorithm designer should be thinking in terms of 

wasting the inexpensive resource (flops) to reduce data 

movement 

 Communication-avoiding algorithms 
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  Data in 2013: 4.4 Zettabytes (4.4 x 1021 bytes) 
 Estimation in 2020: 44 Zettabytes  

 
 

Searching for one element in a 1 MB file: < 0.1 seconds 
Searching for one element in a 1 GB file: a few minutes 
Searching for one element in a 1 TB file: about 30 hours 

Searching for one element in a 1 PB file: > 3 years 
Searching for one element in a 1 EB file: 30 centuries 

Searching for one element in a 1 ZB file: 3,000 millennium 
Estimation using a PC 
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 Map/Reduce paradigm 

 Introduced by Dean and Ghemawat (Google, 2004) 
 As simple as providing:  

̶ MAP function that processes a key/value pair to generate a set of 
intermediate key/value pairs 

̶ REDUCE function that merges all intermediate values associated 
with the same intermediate key 

 Runtime takes care of:  
 Partitioning the input data (Parallelism) 
 Scheduling the program’s execution across a set of machines 

(Parallelism) 
 Handling machine failures 
 Managing inter-machines communication (Parallelism) 
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 Apache Hadoop is an open-source implementation of 
the Map/Reduce paradigm  

 It’s a framework for large-scale data processing 
 It is designed to run on cheap commodity hardware 
 It automatically handles data replication and node failure 
 Hadoop provides: 

 API+implementation for working with Map/Reduce 
 Job configuration and efficient scheduling 
 Browser-based monitoring of important cluster stats 
 A distributed filesystem optimized for HUGE amounts of 

data (HDFS)  
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 Pros: 
 
 Write here all the advantages commented previously 

 
 Hadoop it’s written in Java but allows to execute codes from 

different programming languages (Hadoop Streaming) 
 

 Hadoop Ecosystem (Pig, Hive, HBase, etc…) 
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 Cons: 

 The problem must fit the Map/Reduce paradigm (embarrassingly 
parallel problems) 

 Bad for iterative applications 
 Important degradations in performance when using Hadoop 

Streaming (i.e. when codes are written in languages as Fortran, 
C, Python, Perl, etc.) 

 Intermediate results output is always stored on disks (In-Memory 
MapReduce – IMMR)  

 No reuse computation for jobs with similar input data: 
̶ For example, job runs everyday to find the most frequently read 

news over the past week 
 Hadoop was not-designed by HPC people (joke!!!) 
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 Apache Spark is an open source project 
 It starts as a research project in Berkeley 
 Cluster computing framework designed to be fast and general-

purpose 
 

 Pros (I): 

 Extends the Map/Reduce paradigm to support more types of 
computations (interactive queries and stream processing) 

 APIs in Python, Java and Scala 
 Spark has the ability to run computations in memory (Resilient 

Distributed Datasets – RDDs) 
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 Pros (II): 

 It supports different workloads in the same engine: 
̶ Batch applications 
̶ Iterative algorithms 
̶ Streaming and iterative queries 

 Good integration with Hadoop 
 

 Cons: 

 Memory requirements 
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 Apache Flink 

 It’s an European project 
 Functionalities very similar to those explained for Spark 

 

 If you like R, try this: 
 RHIPE 

̶ Released as R package 
̶ Map and Reduce functions as R code 

 Big R (O. D. Lara et al. “Big R_ Large-scale Analytics on Hadoop Using R”, 
IEEE Int. Congress on Big Data, 2014) 

̶ It hides the Map/Reduce details to the programmer 
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 Those technologies were designed to run on “cheap” 
commodity clusters, but…  
 

… there is more to Big Data than large amounts of 
information 
 

 It also related to massive distributed activities such as 

complex queries and computation (analytics or data-
intensive scientific computing)  
 

 High Performance Data Analytics (HPDA) 
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 Infiniband: 
 It’s the standard interconnect technology used in HPC 

supercomputers 
 Commodity clusters use 1Gbps or 10Gbps ethernet 
 Hadoop is very network-intensive (e.g. Data Nodes and 

Task Trackers exchange a lot of information)   
 56Gbps FDR can be 100x faster than 10 Gbps ethernet 

due to its superior bandwidth and latency 

 It allows to scale the big data platform to the desired size, 
without worrying about bottlenecks 
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 Accelerators: 
 Hadoop and Spark only work on homogeneous clusters 

(CPUs) 
 HPC is moving to heterogeneous platforms consisting of 

nodes which include GPUs, co-processors (Intel Xeon Phi) 
and/or FPGAs. 

 Most promising systems to reach the exaflop 
 Accelerator can boost the performance (not all 

applications fit well) 

 For complex analytics or data-intensive scientific 
computing 

 A lot of interest: HadoopCL, Glasswing, GPMR, MapCG, 
MrPhi, etc… 
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 NLP suited to structure and organize the textual information accessible 
through Internet 

 Linguistic processing is a complex task that requires the use of several 
subtasks organized in interconnected modules  

 Most of the existent NLP modules are programmed using Perl 

(regular expressions) 
 We have integrated into Hadoop three NLP modules (Hadoop 

Streaming): 
 Named Entity Recognition (NER): It consists of identifying as a single unit (or token) 

those words or chains of words denoting an entity, e.g. New York, University of San 
Diego, Herbert von Karajan, etc.  

 PoS-Tagging: It assigns each token of the input text a single PoS tag provided with 
morphological information e.g. singular and masculine adjective, past participle verb, 
etc. 

 Named Entity Classification (NEC): It is the process of classifying entities by means 
of classes such as “People”, “Organizations”, “Locations”, or “Miscellaneous”.  
 
 

 
 

 
 
 
 

 

J. M. Abuín, Juan C. Pichel, Tomás F. Pena, P. Gamallo and M. García. “Perldoop: Efficient Execution of Perl 
Scripts on Hadoop Clusters”, Big Data Conference, 2014 



Natural Language Processing 
Outline 

40 

 HPC people (including myself) are “obsessed” with 
performance… Flops, Flops and Flops 

 Hadoop Streaming is really nice, but it shows an important 
degradation in performance (w.r.t. Java codes) 
 

 Perldoop: we designed an automatic source-to-source 
translator Perl to Java: 
 It’s not general-purpose 
 Perl scripts should be in Map/Reduce format 
 Perl codes should follow some simple programming rules 

 
 
 
 
 

 

J. M. Abuín, Juan C. Pichel, Tomás F. Pena, P. Gamallo and M. García. “Perldoop: Efficient Execution of Perl 
Scripts on Hadoop Clusters”, Big Data Conference, 2014 
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Thank you! 
juancarlos.pichel@usc.es 

citius.usc.es 

 


