


Outline

® High Performance Computing (HPC)
> Towards exascale computing: a brief history
> Challenges in the exascale era

= Big Data meets HPC

> Some facts about Big Data

> Technologies

> HPC and Big Data converging
® Case Studies:

> Bioinformatics
> Natural Language Processing (NLP)



Outline

® High Performance Computing (HPC)
> Towards exascale computing: a brief history
> Challenges in the exascale era

= Big Data meets HPC

> Some facts about Big Data

> Technologies

> HPC and Big Data converging
® Case Studies:

> Bioinformatics
> Natural Language Processing (NLP)






High Performance Computing (HPC)

What types of big problem might require a “Big Computer”?

® Compute Intensive: A single problem requiring a large
amount of computation

® Memory Intensive: A single problem requiring a large
amount of memory

® High Throughput: Many unrelated problems to be
executed over a long period

® Data Intensive: Operation on a large amount of data



High Performance Computing (HPC)

What types of big problem might require a “Big Computer”?

® Compute Intensive:

> Distribute the work across multiple CPUs to reduce the execution
time as far as possible:

— FEach thread performs a part of the work on its own CPU, concurrently
with the others

> CPUs may need to exchange data rapidly, using specialized
hardware

> Large systems running multiple parallel jobs also need fast access
to storage

> Many use cases from Physics, Chemistry, Energy, Engineering,
Astronomy, Biology...

> The traditional domain of HPC and supercomputers



High Performance Computing (HPC)

What types of big problem might require a “Big Computer”?

® Memory Intensive:
> Aggregate sufficient memory to enable solution at all

> Technically more challenging if the program cannot be parallelized

® High Throughput:

> Distribute work across multiple CPUs to reduce the overall
execution time as far as possible

> Workload is trivially (or embarrassingly) parallel
— Workload breaks up naturally into independent pieces
— Each piece is performed by a separate process on a separate CPU

(concurrently)

> Emphasis is on throughput over a period, rather than on
performance on a single problem

> Obviously a supercomputer can do this too



High Performance Computing (HPC)

What types of big problem might require a “Big Computer”?

m Data Intensive:

> Distribute the data across multiple CPUs to process in a reasonable
time
> Note that the same work may be done on each data segment

> Rapid movement of data in and out of (disk) storage becomes
important

> Big Data and how to efficiently process it currently occupies much
thought















High Performance Computing (HPC)

Challenges in the exascale era

m FLOPS is not on command

® Once upon a time... when FPU was the most expensive
and precious resource in a supercomputer

® Metrics: FLOPS, FLOPS and FLOPS

= But Data movement’s energy efficiency isn’t imporving as
fast as Flop’s energy efficiency

B Algorithm designer should be thinking in terms of
wasting the inexpensive resource (flops) to reduce data
movement

= Communication-avoiding algorithms

13






Outline

® High Performance Computing (HPC)
> Towards exascale computing: a brief history
> Challenges in the exascale era

B Big Data meets HPC

> Some facts about Big Data

> Technologies

> HPC and Big Data converging
® Case Studies:

> Bioinformatics
> Natural Language Processing (NLP)

15






Big Data meets HPC
Some facts about Big Data

® Data in 2013: 4.4 Zettabytes (4.4 x 104" bytes)
= Estimation in 2020: 44 Zettabytes

Searching for one element in a 1 MB file: < 0.1 seconds
Searching for one element in a 1 GB file: a few minutes
Searching for one element in a 1 TB file: about 30 hours
Searching for one element in a 1 PB file: > 3 years
Searching for one element in a 1 EB file: 30 centuries

Searching for one element in a 1 ZB file: 3,000 millennium
Estimation using a PC

17









Big Data meets HPC

Technologies: how to process all these data

Map/Reduce paradigm
® [ntroduced by Dean and Ghemawat (Google, 2004)
® As simple as providing:

— MAP function that processes a key/value pair to generate a set of
intermediate key/value pairs

— REDUCE function that merges all intermediate values associated
with the same intermediate key

® Runtime takes care of;
> Partitioning the input data (Parallelism)

> Scheduling the program’s execution across a set of machines
(Parallelism)

> Handling machine failures
> Managing inter-machines communication (Parallelism)

20






Big Data meets HPC

Technologies: Apache Hadoop

® Apache Hadoop is an open-source implementation of
the Map/Reduce paradigm

® |t's a framework for large-scale data processing
® |t is designed to run on cheap commodity hardware
= |t automatically handles data replication and node failure

® Hadoop provides:
> APIl+implementation for working with Map/Reduce
> Job configuration and efficient scheduling
> Browser-based monitoring of important cluster stats

> A distributed filesystem optimized for HUGE amounts of
data (HDFS)

22









Big Data meets HPC

Technologies: Apache Hadoop

® Pros:

> Write here all the advantages commented previously

> Hadoop it’s written in Java but allows to execute codes from
different programming languages (Hadoop Streaming)

> Hadoop Ecosystem (Pig, Hive, HBase, efc...)

25



Big Data meets HPC

Technologies: Apache Hadoop

® Cons:

> The problem must fit the Map/Reduce paradigm (embarrassingly
parallel problems)

> Bad for iterative applications

> Important degradations in performance when using Hadoop
Streaming (i.e. when codes are written in languages as Fortran,
C, Python, Perl, etc.)

> Intermediate results output is always stored on disks (In-Memory
MapReduce — IMMR)

> No reuse computation for jobs with similar input data:

— For example, job runs everyday to find the most frequently read
news over the past week

> Hadoop was not-designed by HPC people (joke!!!)

26



Big Data meets HPC

Technologies: Apache Spark

® Apache Spark is an open source project
® |t starts as a research project in Berkeley

® Cluster computing framework designed to be fast and general-
purpose

= Pros (l):

> Extends the Map/Reduce paradigm to support more types of
computations (interactive queries and stream processing)

> APIs in Python, Java and Scala

> Spark has the ability to run computations in memory (Resilient
Distributed Datasets — RDDs)

27



Big Data meets HPC

Technologies: Apache Spark

= Pros (Il):

> It supports different workloads in the same engine:
— Batch applications
— lterative algorithms
— Streaming and iterative queries

> Good integration with Hadoop

= Cons:
> Memory requirements

28









Big Data meets HPC

Other Technologies

= Apache Flink
> It's an European project
> Functionalities very similar to those explained for Spark

= If you like R, try this:
> RHIPE

— Released as R package
— Map and Reduce functions as R code

> Big R (O. D. Lara et al. “Big R_ Large-scale Analytics on Hadoop Using R,
IEEE Int. Congress on Big Data, 2014)

— It hides the Map/Reduce details to the programmer

31






Big Data meets HPC
HPC and Big Data converging

® Those technologies were designed to run on “cheap”
commodity clusters, but...

® ... there is more to Big Data than large amounts of
information

® |t also related to massive distributed activities such as
complex queries and computation (analytics or data-
intensive scientific computing)

® High Performance Data Analytics (HPDA)

33



Big Data meets HPC

HPC and Big Data converging

® [Infiniband:

> It's the standard interconnect technology used in HPC
supercomputers

> Commodity clusters use 1Gbps or 10Gbps ethernet

> Hadoop is very network-intensive (e.g. Data Nodes and
Task Trackers exchange a lot of information)

> 56Gbps FDR can be 100x faster than 10 Gbps ethernet
due to its superior bandwidth and latency

> It allows to scale the big data platform to the desired size,
without worrying about bottlenecks

34



Big Data meets HPC

HPC and Big Data converging

m Accelerators:

> Hadoop and Spark only work on homogeneous clusters
(CPUs)

> HPC is moving to heterogeneous platforms consisting of
nodes which include GPUs, co-processors (Intel Xeon Phi)
and/or FPGAs.

> Most promising systems to reach the exaflop

> Accelerator can boost the performance (not all
applications fit well)

> For complex analytics or data-intensive scientific
computing

> A lot of interest: HadoopCL, Glasswing, GPMR, MapCG,
MrPhi, etc...

35



Outline

® High Performance Computing (HPC)
> Towards exascale computing: a brief history
> Challenges in the exascale era

= Big Data meets HPC

> Some facts about Big Data

> Technologies

> HPC and Big Data converging
B Case Studies:

> Bioinformatics
> Natural Language Processing (NLP)

36









Outline

Natural Language Processing

NLP suited to structure and organize the textual information accessible
through Internet

® Linguistic processing is a complex task that requires the use of several
subtasks organized in interconnected modules

® Most of the existent NLP modules are programmed using Perl
(regular expressions)

® We have integrated into Hadoop three NLP modules (Hadoop
Streaming):

> Named Entity Recognition (NER): It consists of identifying as a single unit (or token)
those words or chains of words denoting an entity, e.g. New York, University of San
Diego, Herbert von Karajan, etc.

> PoS-Tagging: It assigns each token of the input text a single PoS tag provided with
morphological information e.g. singular and masculine adjective, past participle verb,
etc.

> Named Entity Classification (NEC): It is the process of classifying entities by means

LE 1

of classes such as “People”, “Organizations”, “Locations”, or “Miscellaneous”.

J. M. Abuin, Juan C. Pichel, Tomas F. Pena, P. Gamallo and M. Garcia. “Perldoop: Efficient Execution of Perl 39
Scripts on Hadoop Clusters”, Big Data Conference, 2014



Outline

Natural Language Processing

® HPC people (including myself) are “obsessed” with
performance... Flops, Flops and Flops

® Hadoop Streaming is really nice, but it shows an important
degradation in performance (w.r.t. Java codes)

® Perldoop: we designed an automatic source-to-source
translator Perl to Java:

> It's not general-purpose
> Perl scripts should be in Map/Reduce format
> Perl codes should follow some simple programming rules

J. M. Abuin, Juan C. Pichel, Tomas F. Pena, P. Gamallo and M. Garcia. “Perldoop: Efficient Execution of Perl 40
Scripts on Hadoop Clusters”, Big Data Conference, 2014









Thank you!

juancarlos.pichel@usc.es

citius.usc.es

43



